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Flood control of urban stormwater conduit systems
using the �nite element method
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SUMMARY

This paper presents a method of controlling the water levels in a conduit system by employing optimal
control theory and the �nite element method. A shallow-water equation is employed for the analysis of
�ow behaviour. Optimal control theory is utilized to obtain a control value for the target state value.
The Sakawa–Shindo method is employed as a minimization technique. For the computational storage
requirements, the time domain decomposition method is applied. The Crank–Nicolson method is used
for temporal discretization. In addition to a method for optimally controlling water level, a method is
presented for determining transversality conditions, the terminal condition of the Lagrange multiplier.
Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Japan’s urban areas continue to expand, due to ceaseless construction of infrastructure, roads,
and buildings, leading to a loss of rainfall drainage area and a growing danger of �ooding.
During heavy rainstorms, existing conduits cannot handle the huge volumes of stormwater
that �ow directly into them, risking serious �ood damage.
In recent years, several kinds of �ood control systems have been applied to sewerage

systems. One type, which employs existing conduits, has been proposed to guard against
�ooding. In this study, a water �ow distribution system is proposed as a new control system,
comprising bypass conduits and control devices. A diagram of this control system is shown
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1030 T. KURAHASHI AND M. KAWAHARA

Figure 1. Diagram of �ood control system (I).

Figure 2. Diagram of �ooding control system (II).

in Figure 1. This control system is usable if existing conduits have space which can be used
to store stormwater when a storm occurs.
On the other hand, as a traditional countermeasure of �ooding, stormwater tunnel reservoirs

are constructed to reduce �ooding damage. However, it has recently been reported that this
strategy does not function e�ectively. There are several problems with the side weirs that act
passively as intake structures. It has been proposed that side weirs operated by an administrator
or automatically, and that, in this �ooding control system, the stormwater should be injected
in a planned way into stormwater tunnel reservoirs using a control device. A diagram of this
control system is shown in Figure 2.
In this study, numerical examples, multi-conduit problems and complicated conduit networks

are used to con�rm the e�cacy of these control systems, with the aim of obtaining optimal
control discharge to reduce water level to a target value. The technique used is optimal control
theory, a methodology for obtaining optimal design variables by using adjoint equations. It is
commonly used when design parameters shape need to determined References [1, 2].
In this study, we assume that the water �owing in the conduit has, an exposed surface,

allowing the water �ow to described in terms of shallow water �ow. Concerning the �ow
into side weirs, it has been reported that �ow behaviour can be precisely expressed using
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a two-dimensional shallow-water equation [3], and thus we have used this technique to express
�ow behaviour in this study.
Concerning the optimization problem, the treatment of the transversality condition (the

terminal condition of Lagrange multiplier) is important in evaluating the control value at the
terminal time. Conventionally, the terminal condition of the Lagrange multiplier has been
treated as zero [4]. However, since this approach is not always satisfactory, in this paper we
propose a method by which the distribution of the Lagrange multiplier is determined at the
terminal time.

2. STATE EQUATION

Using the indicial notation and summation convention, the shallow-water equation is employed
to calculate the �ow behaviour, which is as follows:

u̇i + ujui;j + g�;i − �(ui;j + uj;i);j + fui=0 in � (1)

�̇+ {(h+ �)ui};i=0 in � (2)

ui denotes water velocity, � represents the water elevation, g is acceleration due to gravity
and h is water depth. Kinematic eddy viscosity is expressed by �, which is expressed as

�=
�l
6
u∗h

where �l is the Kalman constant and u∗ is velocity of friction which is given as

u∗=
gn2u2k
h1=3

and f, the bottom of friction term, can be denoted as

f=
gn2

(h+ �)4=3
√
ukuk

where n is Manning’s roughness coe�cient.
Computational domain and boundaries are described in Figure 3.
Here, the boundary conditions of the shallow-water equation are de�ned as follows:

ui = ûi=(û; 0); �= �̂ on �U (3)

ti = (0; 0) on �D (4)

tx = 0; v=0 on �S (5)

ui = �ui=(0; �v) on �con (6)

where ti is traction, and is given as,

ti= �(ui;j + uj;i)nj= t̂ i on �S (7)
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Figure 3. Computational domain and boundary conditions.

In addition, �U means the in�ow boundary, �D means the out�ow boundary, �S means the
wall boundary and �con means the boundary that the control discharge is given. If the boundary
�S is a curved line, water velocities ui, are denoted as,

un= uini= ûn on �S (8)

where ni denotes the direction cosine of the unit outward normal of the boundary. The overhat
ˆ expresses the given value on the boundary.
The initial conditions are given as follows:

ui = ûi0 in � at t= t0 (9)

� = �̂0 in � at t= t0 (10)

2.1. Discretization in space

For the spatial discretization of the shallow-water equation, the Galerkin method using the
bubble function element with the stabilization parameter is applied. This method is very useful
for the problem that the water surface is discontinuous. In case that the water surface is
discontinuous, the shock wave occurs at the top and bottom points of the discontinuous water
surface. To control the shock wave, the Galerkin method using the bubble function element
with the stabilization parameter is very useful. Therefore, this method is employed to analyse
the shallow-water �ow. Bubble function interpolation is applied as the interpolation function
for the weighting function and state variables. The interpolation function for velocities and
water elevation can be expressed as

ui = �1ui1 + �2ui2 + �3ui3 + �4ũi4 (11)

� = �1�1 + �2�2 + �3�3 + �4�̃4 (12)

As for the interpolation function of the weighting function, the same type of interpolation
function is employed. State variables at the gravity points at each element, ũi4 and �̃4, are
written as

ũi4 = ui4 − 1
3 (ui1 + ui2 + ui3) (13)
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�̃4 = �4 − 1
3 (�1 + �2 + �3) (14)

The shape function, which is C0 continuous can be de�ned as

�1 = N1; �2 =N2; �3 =N3 (15)

�4 = 27N1N2N3 (16)

where N1–N3 are linear interpolation function.
By applying the bubble function interpolation for the weighted residual equations which

can be obtained by the Galerkin method, the �nite element equation can be obtained as

Mu̇i + Sj(uadvj )ui + gSi�+ �(Hjjui +Hjiuj) + fMui = Ti (17)

M�̇+ Si(uadvi )h+ Si(u
adv
i )�+ Si((h+ �)

adv)ui = 0 (18)

where matrices M , Si((uadvi )), Sj(u
adv
j ), Si((h+ �)

adv), Hii, Hji and Hjj denote the coe�cients
of the �nite element equations. The traction vector for water velocities is denoted by Ti. uadvi
and (h+ �)adv mean the advection variables for the non-linear terms.

2.2. Discretization in time

For the temporal discretization of the �nite element equations, the Crank–Nicolson method is
applied. This method is well known as the scheme that it is possible to compute stably. The
�nite element equations discretized in the temporal direction can be obtained as

M
un+1i − uni
	t

+ Sj(uadvj )u
n+(1=2)
i + gSi�n+(1=2) + �(Hjju

n+(1=2)
i +Hjiu

n+(1=2)
j )

+fMun+(1=2)i =Tni in � (19)

M
�n+1 − �n
	t

+ Si(uadvi )h
n+(1=2) + Si(uadvi )�

n+(1=2)

+Si((h+ �)adv)u
n+(1=2)
i =0 in � (20)

where un+(1=2)i , hn+(1=2), �n+(1=2), advection velocity uadvi and (h+ �)adv are expressed as

un+(1=2)i = 1
2(u

n+1
i + uni ); hn+(1=2) = 1

2 (h
n+1 + hn)= h; �n+(1=2) = 1

2 (�
n+1 + �n) (21)

uadvi = 1
2(3u

n
i − un−1i ); (h+ �)adv = 1

2(3(h+ �)
n − (h+ �)n−1)= h+ 1

2(3�
n − �n−1) (22)

uadvi and (h+ �)adv are quasi-linear approximations of advection velocity, given by the Adams–
Bashforth formula, and have second-order accuracy. Therefore, in the temporal direction, this
discretization is the linear scheme which has second-order accuracy.
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2.3. Derivation of stabilized operator control term for bubble function

A stabilization parameter has to be included in the �nite element equation if the bubble
function element is used. Therefore, a stabilization parameter is introduced to add numerical
viscosity [5, 6]. The bubble function is able to eliminate the barycentre point using static con-
densation. If static condensation is applied to the bubble function, the stabilization parameter
derived by the bubble function is equivalent to that derived by formulation of the SUPG
method (streamline-upwind/Petrov–Galerkin method [7]). The stabilization parameters for the
shallow-water equation discretized by the Galerkin method using the bubble function element
can be derived as follows.

2.3.1. Stabilization parameters for bubble function. For the momentum equation and the
continuity equation, the stabilization parameters for bubble function can be obtained as

�eBui =
〈�e; 1〉2�eA−1

e

(1=	t)‖�e‖2�e + 1
2[(�+ �

′)2‖�e;j‖2�e + f‖�e‖2�e ]
(23)

�eB� =
〈�e; 1〉2�eA−1

e

(1=	t)‖�e‖2�e + 1
2[(�

′)‖�e;i‖2�e ]
(24)

where �′ is a control parameter for the stable operation. This parameter can be determined
such that this value is equivalent to the following parameters derived by the SUPG method.

2.3.2. Stabilization parameters derived by SUPG method. For the momentum equation and
the continuity equation, the stabilization parameters derived by the SUPG method can be
written as

�eBui =
(
1
2
�−1eSui +

�
	t

)−1
(25)

�eB� =
(
1
2
�−1eS� +

�
	t

)−1
(26)

where �−1eSui , �
−1
eS� and � are calculated as

�−1eSui =

[(
2|Usi|
he

)2
+
(
4�
h2e

)2]1=2
; �−1eS�=

2|Usi|
he

; �=
Ae||�e||2�e
〈�e; 1〉�e

(27)

Finally, at the gravity points for each element, the stabilized operator control term can be
obtained as follows.

2.3.3. Stabilized operator control terms at gravity points for each element. Those terms for
the momentum equation and the continuity equation can be shown as

(�+ �′)2‖�e;j‖2�e =
〈�e; 1〉2�e
Ae

�−1eSui − f||�e||2�e (28)
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The term for continuity equation can then be shown as

�′‖�e;i‖2�e =
〈�e; 1〉2�e
Ae

�−1eS� (29)

Here, these terms can be operated as the numerical viscosity at the gravity points of each
element. The role of these terms is to control the numerical oscillation. In addition, |Usi|, he,
〈�e; 1〉�e and ‖�e‖2�e are written as

|Usi| =
√
u2 + v2 + gh (30)

he =
√
2Ae (31)

〈�e; 1〉�e =
Ae
3

(32)

‖�e‖2�e =
Ae
6

(33)

where Ae means the area of an element. Ae is calculated as
∫
�e
d�.

3. OPTIMAL CONTROL THEORY

3.1. De�nition of performance function

Optimal control theory is employed to obtain the control value for the target state. The
performance function is expressed as the square sum of the residual between the computed
and target water levels, the square form of the control water velocity and the square sum of the
residual between the computed and target water levels at the terminal time. The performance
function is expressed as

J =
1
2

∫ tf

t0

∫
�
(�− �Target)TQ(�− �Target) d� dt + 12

∫ tf

t0

∫
�
�uTi R �ui d�dt

+
1
2

∫ tf

t0

∫
�
(�(tf)− �Target(tf))TW (�(tf)− �Target(tf)) d�dt (34)

where Q, R and W are weighting constants, � is the computed water level and �Target is
the target water level and �ui denotes optimal control velocity. The weighting constants Q,
R and W mean the values which are set to take a balance of the computed value for each
terms of the performance function. For instance, if we can ignore the scale of the control
device, we can set Q=1:0, R=0:0 and W = Ŵ . In addition, if we would like to precisely
express the control value near the terminal time, we can set the weighting constant W based
on the value of weighting constant Q. The set of the weighting constants depends on the
each control problems. Therefore, according to the problem, the weighting constants should
be appropriately set. Here, the purpose of this study is to �nd the optimal control discharge
�Q which is calculated by �ui to minimize the performance function under the constraints of the
shallow-water equation, initial conditions and boundary condition. Minimizing the performance
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function means that the computed water level should be as close as possible to the target water
level. Here, the target water level is a pre-assigned value that is predicted not to cause any
�ooding. To determine the distribution of the Lagrange multiplier at the terminal time, the
last term of the performance function is added.

3.2. Derivation of adjoint equation

The performance function is constrained by the state equation. The Lagrange multiplier method
is applicable to minimizing the performance function with constraint conditions. The extended
performance function is therefore introduced using the Lagrange multiplier, multiplied by the
state equation. As the state equation which is added to the performance function, discretized
�nite element equations in the spatial direction are employed. The extended performance
function is expressed as follows:

J ∗= J +
∫ tf

t0

∫
�
(L− u∗T

i M u̇i − �∗TM�̇) (35)

where u∗
i and �

∗, respectively, denote the Lagrange multipliers for water velocity and water
elevation. Scalar value L is expressed as

L= u∗T
i (−Sj(uadvj )ui − gSi�− �(Hjj(�′)ui +Hji(�′)uj)− fMui − Ti)

+ �∗T(−Si(uadvi ) h− Si(uadvi )�− Si((h+ �)adv)ui + A(�′)�) (36)

where matrices M , Si((uadvi )), Sj(u
adv
i ), Si((h+ �)

adv), Hji(�′), Hjj(�′) and A(�′) denote the
coe�cients derived by the Galerkin method using the bubble function element with stabilized
operator control term and Ti means the traction vector for water velocity. In addition, the
scalar value L means the terms that the steady terms for the discretized state equation (17)
and (18), are multiplied by the Lagrange multipliers. As the necessary condition under which
J ∗ should be stationary, the �rst variation of J ∗ must be zero, which is calculated as

�J ∗ =
∫ tf

t0

∫
�

{
�u∗T
i

(
@L
@u∗
i

−Mu̇i
)
+ ��∗T

(
@L
@�∗ −M�̇

)

+

(
@L
@ui

T

+ u̇∗T
i M

)
�ui +

(
@L
@�

T

+ �̇∗TM + (�− �Target)TQ
)
��

+

(
@L
@ �ui

T

+ u̇∗T
i M + �uiTR

)
� �ui

}
d�dt +

∫ tf

t0

∫
�

{(
@L

@ui(tf)

T
)
�ui(tf)

+

(
@L

@�(tf)

T

+ (�(tf)− �Target(tf))TW
)
��(tf)

}
d�dt

−
∫
�

{
u∗T
i (t0)M�ui(t0)− u∗T

i (tf)M�ui(tf)

+ �∗T(t0)M��(t0)− �∗T(tf)M��(tf)
}
d� (37)
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Therefore, the adjoint equations for the Lagrange multipliers can be obtained in the follow-
ing form:

MTu̇∗
i +

@L
@ui

=T ∗
i in � (38)

MT�̇∗ +
@L
@�
+QT(�− �Target)= 0 in � (39)

Here, the boundary conditions for the Lagrange multipliers are de�ned as follows:

ui∗ = (0; 0); �∗=0 on �U (40)

t∗i = (0; 0) on �D (41)

t∗x = 0; v∗=0 on �S (42)

ui∗ = (0; 0) on �con (43)

where t∗i means the traction vector for Lagrange multipliers. As well as the case of the state
equation, �U means the in�ow boundary, �D means the out�ow boundary, �S means the wall
boundary and �con means the boundary that the control discharge is given.
In addition, the gradient of performance function with respect to control velocity can be

obtained as

@J ∗

@ �ui
= t∗i =

@L
@ �ui

T

+ u̇∗T
i M + �uiTR (44)

In this paper, a method for determining the distribution of the terminal condition over the
whole domain is proposed. If the adjoint equation is solved, it is necessary to determine
the terminal condition of the Lagrange multipliers. Conventionally, the terminal condition of
the Lagrange multiplier has been treated as zero in all iteration cycles.
If the distribution of the terminal condition is expressed by a steady adjoint equation, the

terminal condition is determined by solving the following equations:

@L
@ui(tf)

=T ∗
i in � at t= tf (45)

@L
@�(tf)

+W T(�(tf)− �Target(tf))=0 in � at t= tf (46)

Finally, if the performance function is converged, the water level at the terminal time ap-
proaches the target water level �Target. Therefore, at the �nal iteration, the solution of the
above equation arrives at zero, meaning that the terminal condition of the Lagrange multi-
plier becomes zero at the �nal iteration. Consequently, the necessary condition for which the
extended performance function is stationary is satis�ed at the �nal iteration. For the temporal
discretization of the adjoint equation, the Crank–Nicolson method is applied.
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4. MINIMIZATION TECHNIQUE

4.1. The Sakawa–Shindo method

The Sakawa–Shindo method is applied as the minimization technique [8]. In this method,
a modi�ed performance function to which a penalty term is added is introduced. The modi�ed
performance function is written as

K = J ∗(l) +
1
2

∫ tf

t0

∫
�
( �ui(l+1) − �ui(l))

T
W (l)( �ui(l+1) − �ui(l)) d� dt (47)

where l is the iteration number for the minimization, �ui is the control water velocity and
W (l) is the weighting parameter. By applying the stationary condition, �K =0, the following
equation can be obtained. The optimal control water velocity is renewed by the following
equation:

W (l)T �ui(l+1) =W (l)T �ui(l) − @J ∗(l)

@ �ui
on �con (48)

where �con means the control boundary. Finally, the control discharge �Q can be calculated as

�Q=
∫
�con
(h+ �)| �Ui| d� (49)

where | �Ui| is calculated as

| �Ui|=
√
�u2 + �v2 (50)

The algorithm of the Sakawa–Shindo method is shown below.

1. Choose an initial control value, �ui(l).
2. Compute u(l)i and �(l) using the state equation and the initial performance function J (l).
3. Compute u∗(l)

i and �∗(l) using the adjoint equation.
4. Generate a new control value �ui(l+1) using Equation (48).
5. Check for convergence; if ‖ �ui(l+1) − �ui(l)‖¡� then stop or go to step 6.
6. Compute u(l+1)i and �(l+1) using the state equation and the performance function J (l+1).
7. Renew the weighting parameter W (l); if J (l+1)6J (l), then set W (l+1) =0:9W (l) and go to
step 3 else set W (l+1) =2:0W (l) and go to step 4.

4.2. Time domain decomposition method

In principle, solution of the state equation at all discretization points in space and time
is required to solve the adjoint equation. For large-scale optimization problems, numerous
computational storage requirements are required, making it almost impossible to store the
solutions of the state equation at all time discretization points. Thus, a method that can drasti-
cally reduce storage requirements is needed, and is described below. The time domain decom-
position method (TDDM) is employed as a technique for reducing the storage requirement
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1st step

2nd step

3rd step

4th step

5th step

Time domain decomposition method

Conventional method

t0 tf

t0 tf

B*dt 2B*dt 3B*dt

Forward analysis

Inverse analysis

Forward analysis

Figure 4. Subdivision of [0; tf], A=5, B=5, N =25.

[9, 10]. The algorithm or the TDDM can be described as follows:

1. Assume the number of time steps to be N .
2. Consider positive integers A and B; the meanings of A and B are the number of divisions
and the number of time steps in the divided section, such that AB=N .

3. Decompose the interval [ 0, tf ] in A subintervals of length B	t.
4. Solve the state equation and store the solution for n= iB and i=0; 1; : : : ; A− 1, and then
for n=(A− 1)B+ j and j=1; 2; : : : ; B; which are shown in Figure 4.

5. Solve the adjoint equation for n=N; N − 1; : : : ; N − B + 1 using the state equation
solution for n=N −B+1; N −B+2; : : : ; N and compute the gradient of the performance
function.

6. Solve the state equation and store the solution for n=(A − 2)B + 1; (A − 2)B + 2; : : : ;
(A− 1)B− 1.

7. Solve the adjoint equation for n=(A− 1)B− 1; (A− 1)B− 2; : : : ; (A− 2)B+ 1 using the
solution of the state equation for n=(A − 2)B + 1; (A − 2)B + 2; : : : ; (A − 1)B − 1 and
compute the gradient of the performance function.

8. Set A=A− 1 and go to step 6.
The number of storage requirements is A+ B. Thus, to minimize the storage, A+ B needs

to be minimized. If N 1=2 is an integer, the minimum is attained for A=B=N 1=2. Therefore,
the storage requirement is 2N 1=2 instead of N .
The e�ciency of TDDM is validated for the numerical example (Section 5.2). In this

example, the number of time steps is set at 2500. The relation between the divided section
A, the time step B in the divided section, EXE size and reduction ratio is given in Table I.
If the divided section A is equal to the time step B in the divided section, the compu-

tational storage requirements can be minimized. Applying the TDDM to this example, the
computational storage requirements can be reduced by 81.4%.
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For large-scale optimization problems, this method increases the e�ciency of practical
computation.

5. NUMERICAL EXAMPLE

5.1. Control problem of water level for multiple conduits

5.1.1. Computational model. For the control problem of water level, the multi-conduits prob-
lem is adopted. In this study, ‘�ood control system (I)’ shown in Figure 1 is applied. It is
assumed that there are four main conduits connected with six bypass conduits. The compu-
tational model is illustrated in Figure 5. The main conduits is 100m and that of the bypass
conduits is 5m.
In�ow boundary conditions for each main conduit are shown in Figure 6. It is assumed

that one peak discharge occurs for the conduits A and D. Steady discharge is applied to
conduits B and C. The initial condition of the water level is de�ned as shown in Figure 7.
It is established that the water levels in the main conduits B and C are lower than those of
main conduits A and D. Therefore, if a large volume of water is injected to main conduits
A and D, the water level of main conduits A and D can be maintained at the target water
level by diversion to main conduits B and C.
Therefore, the target points are set at the centre of main conduits A and D. Here, the

purpose is to �nd the optimal control discharge for reducing the water level of main conduits
A and D to the target water level.

Table I. Relation of between A, B, EXE size and reduction ratio.

A B EXE size (MB) Reduction ratio (%)

1 2500 1844 0.0
2 1250 1075 41.7
5 500 614 66.7
10 250 346 81.2
50 50 343 81.4

Figure 5. Computational model.
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Figure 7. Initial condition of water level.

5.1.2. Treatment of control boundary and �nite element mesh. To treat this type of control
problem, the following two items need to be considered:

• The water level becomes discontinuous between the main conduit and bypass conduit.
Therefore, the conduits cannot be connected by a �nite element mesh.
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Figure 8. Treatment of control boundary.

0.
5m

0.5mX

Y

Z

Figure 9. Finite element mesh.

• As a result of diversion by the control device, the inner bypass conduit �lls to the ceiling
and is subjected to pressure. Consequently, the assumption of shallow-water �ow is not
realized.

Based on these facts, the �nite element mesh of the bypass conduit is not generated to
avoid the discontinuous of water surface between the bypass conduit and the main conduit,
and to satisfy the assumption of the shallow-water �ow. It can be treated that the control
discharge on �con1 is same as the control discharge on �con2, because the inner of the bypass
conduit is the state of pressure. Therefore, the computed control boundary condition on �con1
is given on the �con2 as shown in Figure 8. Hence, the �nite element mesh shown in Figure 9
is used in this study, and consists of main conduits only. The total number of nodes and
elements are respectively, 2520 and 3320.

5.1.3. Computational condition and numerical results. The purpose of this study is to deter-
mine the optimal control discharge for each bypass conduit to approach the computed water
level to the target water level at the target points.
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Table II. Computational condition.

Number of time steps 2500
Time increment, 	t (s) 0.04
Kalman constant, �l 0.41
Manning coe�cient of roughness, n (s/m1=3) 0.013
Weighting constant, Q 1.0
Weighting constant, R 0.0001
Weighting constant, W 0.2
Target water level, �Target (m) −0:10

Figure 10. Number of control points and target points.

The computational conditions for this analysis are listed in Table II. The weighting constant
Q at the target point is 1.0 and at other points is 0.0. The weighting constant R at the control
point is 0.0001 and at other points are 0.0. The weighting constant W at the target point is
0.2 and at other points are 0.0.
The number of control and target points is shown in Figure 10. The direction of the

injection of control discharge is determined as being in one direction, since the control device,
a pump, cannot suck water: it only discharges water. The computational results are shown in
Figures 11–15. Figure 11 shows the variation in the performance function. It can be seen that
the performance function decreases and converges. This means that the computed water level
with optimal control is as close as the target water level. Consequently, the time history of
the control discharge, shown in Figures 12 and 13, can be obtained. It can be found that the
control devices do not work at Nos. 2, 3, 4 and 6. The reason, in this numerical model, is the
target points were set only at conduits A and D, making it unnecessary to inject from conduits
B and C to conduits A and D. These numerical results are thus entirely expected. Furthermore,
the response of control discharge for point Nos. 1 and 5 is marked. In this numerical example,
one periodic wave is given on the left side of conduit A and D. In Figures 14 and 15, it
is seen that one peak water level occurs in cases without control. Similarly, in Figures 12
and 13, the response of control discharge for the response of peak water level without control
can be seen. Hence, it is clear that appropriate control discharge can be obtained by using
the optimal control theory. Figures 14 and 15 show the time histories of water level at target
point Nos. 1 and 2. The solid line indicates the non-control case and the broken line indicates
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Figure 11. Variation in performance function.
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Figure 12. Time history of control discharge at control point Nos. 1–3.

the optimal-control case. The target water level was set −0:10m. At both target points, the
water level could be made to the target water level.

5.1.4. Remarks for terminal condition of Lagrange multiplier. In this paper, a method is pro-
posed for determining the terminal condition of the Lagrange multiplier. Conventionally, the
terminal condition of the Lagrange multiplier has been treated as zero in all iteration cycles,
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Figure 13. Time history of control discharge at control point Nos. 4–6.
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Figure 14. Time history of water level at target point No. 1.

and as a result, the control value near the terminal time has not been adequately expressed. To
settle this problem, a method for determining the terminal condition of the Lagrange multiplier
via a solution using a steady adjoint equation is proposed. The in�uence of terminal condition
of Lagrange multiplier was investigated using the computational results for control discharge
between the present and conventional methods. Figures 16 and 17 show a comparison of
the control discharge at control point Nos. 1 and 5 between the present and the conventional
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Figure 15. Time history of water level at target point No. 2.

0

 0.2

 0.4

 0.6

 0.8

1

 1.2

 1.4

0  10  20  30  40  50  60  70  80  90  100

C
on

tr
ol

 d
is

ch
ar

ge
 (

m
3/

s)

Time (sec)

Present method
Conventional method

Figure 16. Comparison of control discharge at control point No. 1 between
present method and conventional method.

methods. In the conventional method, in which the terminal condition of the Lagrange multipli-
ers is set at zero, the control discharge near the terminal time gradually falls to zero under the
in�uence of the terminal condition. However, in the present method, the control discharge near
the terminal time can be improved over that obtained by the conventional method. Moreover,
the distribution of the Lagrange multiplier at the terminal time is investigated. The distribution
of Lagrange multipliers for each state variable are shown in Figures 18 and 19. Figures 18 and
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Figure 20. Computational model.

19 denote the distribution of the Lagrange multipliers at the �rst and �nal iteration. In Figure
18, the distribution of Lagrange multipliers can be con�rmed: they �nally converge to zero,
as shown in Figure 19. This means that the �rst variation of extended performance function
is satis�ed.
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Figure 21. Finite element mesh.

1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98

Height between ground level and bottom of conduit

Figure 22. Height between ground level and bottom of conduit.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:1029–1057



1050 T. KURAHASHI AND M. KAWAHARA

Figure 23. Number of in�ow points.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

0 5  10  15  20  25  30

In
flo

w
 d

is
ch

ar
ge

 (
m

3/
se

c)

Time (min)

No. 1-5,No. 7 and No. 11-13
No. 6 and No. 8-10

Figure 24. Time history of in�ow discharge on inlet boundary.

5.2. Control problem of water level for complicated network of conduits

5.2.1. Computational model and computational conditions. In this section, a complicated
network of conduits is used as a numerical study. The computational model is illustrated in
Figure 20. In this study, ‘�ooding control system (II)’, shown in Figure 2 is applied. Since
the adequate control discharge needed to reduce the water level cannot easily be obtained at
each control point, a complicated network is employed. Therefore, we examine here whether
adequate control discharge can be achieved by using optimal control theory. This control
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Figure 25. Target points and control points.

Table III. Computational condition.

Number of time steps 18 000
Time increment, 	t (s) 0.1
Kalman constant, �l 0.41
Manning coe�cient of roughness, n (s/m1=3) 0.013
Weighting constant, Q 1.0
Weighting constant, R 0.0001
Weighting constant, W 0.9
Target water level, �Target (m) 0.0

system is based on the assumption that the water levels at the target points can be controlled
by injecting water from the control points to the stormwater tunnel reservoir. The �nite
element mesh and height between ground level and the bottom of the conduit are shown in
Figures 21 and 22. The total number of nodes and elements are 1665 and 2220, respectively.
It is assumed that the ground water level is �at; height, therefore, means the elevation of the
bottom of the conduit from the �at ground surface. The number of in�ow points are illustrated
in Figure 23. There are two types of width at the in�ow points. The width of conduits is
0.5m at in�ow point Nos. 1–5, 7 and 11–13; and 0.8m at in�ow point Nos. 6 and 8–11.
The in�ow discharge at each point is shown in Figure 24. Here, the four target points and
�ve control points are set as shown in Figure 25. The purpose of this study is to obtain the
control discharge at each control points that makes the computed water levels approach the
target water level as closely as possible.
The computational conditions for this analysis are displayed in Table III. The weighting

constant Q at the target point is 1.0 and is 0.0 at other points. The weighting constant R at
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Figure 26. Variation in performance function.
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Figure 27. Time History of control discharge at control point No. 1.

the target point is 0.0001 and is 0.0 at other points. The weighting constant W at the target
point is 0.2 and is 0.0 at other points.

5.2.2. Numerical results. Firstly, the variation of the performance function is shown in
Figure 26. Consequently, the value of the performance function can be reduced by 90.9%.
Secondly, the time history of control discharge is shown in Figures 27–31. The variations
in the control discharge are similar to the variations of the in�ow discharge. Adequate con-
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Figure 28. Time history of control discharge at control point No. 2.
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Figure 29. Time history of control discharge at control point No. 3.

trol discharges can be numerically obtained using optimal control theory. Thirdly, the time
history of the water level at the target points from Nos. 1 to 4 are shown in Figures 32–35.
At the target point Nos. 1 and 2, the water level did not reach close enough to the target
value, possibly due to convergence at a local minimum point. However, the water level was
successfully reduced to the target water level at target point Nos. 3 and 4.
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Figure 30. Time history of control discharge at control point No. 4.
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Figure 31. Time history of control discharge at control point No. 5.

6. CONCLUSIONS

In this paper, optimal control theory was employed to calculate the optimal control discharge
needed to reduce the water level at the target points. As state equations, the shallow-water
equation was employed to express water behaviour. The Galerkin method using the bubble
function element with stabilized operator control term [5, 6] which is derived using the SUPG
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Figure 32. Time history of water level at target point No. 1.
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Figure 33. Time history of water level at target point No. 2.

method [7] and the Crank–Nicolson method, respectively, were used for the spatial and tem-
poral discretizations. The Sakawa–Shindo method was used as the minimization technique [8].
A method was also presented for determining the terminal condition with respect to Lagrange
multiplier. As the numerical examples, the following problems were used:

1. Control problem of water level in multiple conduits.
2. Control problem of water level in complicated network of conduits.
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Figure 34. Time history of water level at target point No. 3.
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Figure 35. Time history of water level at target point No. 4.

The conclusions of this study are written as follows:

• Optimal control discharge can be obtained by using optimal control theory.
• Whether this approach is e�ective or not can be judged by whether or not a bypass
conduit and control device are required.

• The control discharge can be estimated before the construction of this type of control
system.
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• The water level in the surcharge conduit can be reduced to the target water level by
constructing bypass conduits and control devices.

• The proposed method for determining terminal conditions with respect to the Lagrange
multiplier is useful for evaluating adequate control values near the terminal time.

Those conclusions suggest that it is necessary to apply this control theory to �ood-limiting
designs. The size of pumps and the height of side weir can be appropriately determined using
the results of analysis carried out on the initial design.
Furthermore, the time domain decomposition method was applied to this problem [9, 10].

As a result, the computational storage requirements could be drastically reduced. However,
this method has a drawback in terms of computational time, since the state equation has to
be calculated twice per iteration. Hence, a great deal of computational time is required to
obtain an optimal solution. To counteract this disadvantage, high-performance minimization
technique should be employed.
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